学海网 - 学习生活中必备的中文网站!
当前位置: 学海网 > 高考试题 > 2015年江苏高考理科数学试题

2015年江苏高考理科数学试题

时间:2016-03-16 分类:高考试题 来源:学海网

12015年江苏数学填空题

  1. 已知集合,则集合中元素的个数为_______.
  2. 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.
  3. 设复数z满足(i是虚数单位),则z的模为_______.
  4. 根据如图所示的伪代码,可知输出的结果S为________.

  1. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.
  1. 已知向量,若,则m-n的值为______.
  1. 不等式的解集为________.
  1. 已知,则的值为_______.

9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为

10.在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为

11.数列满足,且),则数列的前10项和为 。

12.在平面直角坐标系中,为双曲线右支上的一个动点。若点到直线的距离对c恒成立,则是实数c的最大值为

13.已知函数,则方程实根的个数为

14.设向量,则的值为

22015年江苏数学解答题

15.在中,已知

(1)求BC的长;

(2)求的值。

16.如图,在直三棱柱中,已知.设的中点为D,

求证:(1)

(2)

C:Documents and SettingsAdministrator桌面AppDataRoamingTencentUsers281488526QQWinTempRichOleW[2[7QS[)B@Y99{Y{9TJL$1.png

17.(本小题满分14分)

某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数(其中a,b为常数)模型.

(I)求a,b的值;

(II)设公路l与曲线C相切于P点,P的横坐标为t.

①请写出公路l长度的函数解析式,并写出其定义域;

②当t为何值时,公路l的长度最短?求出最短长度.

18.(本小题满分16分)

如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左准线l的距离为3.

(1)求椭圆的标准方程;

(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.

19.已知函数

(1)试讨论的单调性;

(2)若(实数c是a与无关的常数),当函数有三个不同的零点时,a的取值范围恰好是,求c的值。

20.设是各项为正数且公差为d的等差数列

(1)证明依次成等比数列

(2)是否存在,使得依次成等比数列,并说明理由

(3)是否存在及正整数,使得依次成等比数列,并说明理由

附加题

21、(选择题)本题包括A、B、C、D四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤。

A、选修4-1:几何证明选讲(本小题满分10分)

如图,在中,的外接圆圆O的弦于点D

求证:

C:AppDataRoamingTencentUsers969747408QQWinTempRichOle{$F(9U93)U3B89N06IZV_YG.png

B、选修4-2:矩阵与变换(本小题满分10分)

已知,向量是矩阵的属性特征值的一个特征向量,矩阵以及它的另一个特征值。

C.[选修4-4:坐标系与参数方程]

已知圆C的极坐标方程为,求圆C的半径.

D.[选修4-5:不等式选讲]

解不等式

22.如图,在四棱锥中,已知平面,且四边形为直角梯形,,

(1)求平面与平面所成二面角的余弦值;

(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长

23.已知集合,设,令表示集合所含元素个数.

(1)写出的值;

(2)当时,写出的表达式,并用数学归纳法证明。

小编推荐: 2015年山东高考语文试题及答案 2015年江苏高考文科数学试题 2015年山东高考理科数学试题

相关推荐

请关注我们微信公众号:mw748219

 立刻访问