12015年北京文科数学选择题
(共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。)
(1)若集合A={x|□5<x<2},B={x|□3<x<3},则A□B=
A. 3<x<2 B. 5<x<2 C. 3<x<3 D. 5<x<3
(2)圆心为(1,1)且过原点的圆的方程是
(A)(x□1)2+(y□1)2=1 (B)(x+1)2+(y+1)2=1
(C)(x+1)2+(y+1)2=2 (D)(x□1)2+(y□1)2=2
(3)下列函数中为偶函数的是()
(A)y=x2sinx (B)y=x2cosx (C)Y=|ln x| (D)y=2x
(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年人数为()
(A)90 (B)100 (C)180 (D)300
类别 | 人数 |
老年教师 | 900 |
中年教师 | 1800 |
青年教师 | 1600 |
合计 | 4300 |
(5)执行如果所示的程序框图,输出的k值为
(A)3 (B)4 (C)5 (D)6
(6)设a,b是非零向量,“a·b=IaIIbI”是“a//b”的
(A) 充分而不必要条件
(B) 必要而不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为
(A)1 (B) (B) (D)2
(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
注:“累计里程”指汽车从出厂开始累计行驶的路程
在这段时间内,该车每100千米平均耗油量为
(A)6升
(B)8升
(C)10升
(D)12升
22015年北京文科数学填空题
(共6小题,每小题5分,共30分)
(9)复数i(1+i)的实数为
(10)2-3,3,log25三个数中最大数的是
(11)在△ABC中,a=3,b=,A=,B=
(12)已知(2,0)是双曲线=1(b>0)的一个焦点,则b=.
(13)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为
(14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生。
从这次考试成绩看,
①甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是
②在语文和数学两个科目中,两同学的成绩名次更靠前的科目是
32015年北京文科数学解答题
(共6题,共80分,解答应写出文字说明,演算步骤或证明过程。)
(15)(本小题13分)
已知函数f(x)=
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间上的最小值。
(16)(本小题13分)
已知等差数列{}满足+=10,-=2.
(Ⅰ)求{}的通项公式;
(Ⅱ)设等比数列{}满足,;问:与数列{}的第几项相等?
(17)(本小题13分)
某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成下统计表,其中“√”表示购买,“×”表示未购买。
商品 顾客人数 | 甲 | 乙 | 丙 | 丁 |
100 | √ | × | √ | √ |
217 | × | √ | × | √ |
200 | √ | √ | √ | × |
300 | √ | × | √ | × |
85 | √ | × | × | × |
98 | × | √ | × | × |
(Ⅰ)估计顾客同时购买乙和丙的概率
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
(18)(本小题14分)
如图,在三棱锥E-ABC中,平面EAB ⊥平面ABC,三角形EAB为等边三角形,AC⊥ BC,且AC=BC=,O,M分别为AB,EA的中点。
(1) 求证:EB//平面MOC.
(2) 求证:平面MOC⊥平面 EAB
(3) 求三棱锥E-ABC的体积。
(19)(本小题13分)
设函数f(x)= ,k>0
(I)求f(x)的单调区间和极值;
(II)证明:若f(x)存在零点,则f(x)在区间(1,)上仅有一个零点。
(20)(本小题14分)
已知椭圆,过点且不过点的直线与椭圆交于两点,直线与直线.
(1)求椭圆的离心率;
(II)若AB垂直于x轴,求直线BM的斜率;
(III)试判断直线BM与直线DE的位置关系,并说明理由。